#########################################################
conda install -c conda-forge tensorflow
conda install ipython
## Installations of TensorFlow
#########################################################
Anaconda is a Python distribution that includes a large number of standard numeric and scientific computing packages. Anaconda uses a package manager called 'condo' hat has its own environment system similar to Virtualenv.
- Install Anaconda
- Create a condo environment
#########################################################
Anaconda is a Python distribution that includes a large number of standard numeric and scientific computing packages. Anaconda uses a package manager called 'condo' hat has its own environment system similar to Virtualenv.
- Install Anaconda
- Create a condo environment
conda create -n tensorflow python=3.6
conda install ipython
conda install jupyter
which python
which ipython
which jupyter
- After the install you will activate the condo environment each time you want to use TensorFlow.
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.12.0rc0-cp27-none-linux_x86_64.whl
- Optionally install iPython and other packages into the condo environment.
source activate tensor flow
Install Python
which python
which ipython
which jupyter
- Activate the condo environment and install TensorFlow in it.
source activate tensor flow
source activate tensor flow
- After the install you will activate the condo environment each time you want to use TensorFlow.
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.12.0rc0-cp27-none-linux_x86_64.whl
- Optionally install iPython and other packages into the condo environment.
source activate tensor flow
source deactivate
Install Python
### Python commands
快速安装python命令行工具
```
python3 -m pip install --user pipx
python3 -m pipx ensurepath
```
Pipenv自动为您的项目创建和管理virtualenv,以及在安装/卸载软件包时从Pipfile添加/删除软件包。它还生成了非常重要的Pipfile.lock文件,用于生成确定性构建。
```
pipx install pipenv
```
Black是代码格式化工具, 产生的代码差异最小,可以加速代码审查.
isort是可以按字母顺序对 import 进行排序,并自动分成多个部分。
```
pipenv install black isort --dev
```
setup.cfg config
```
[isort]
multi_line_output=3
include_trailing_comma=True
force_grid_wrap=0
use_parentheses=True
line_length=88
```
use black and isort
```
pipenv run black
pipenv run isort
```
cookiecutter生成项目
```
pipx run cookiecutter gh:sourceryai/python-best-practices-cookiecutter
```
# Test the TensorFlow installation
#############################
python
...
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> print(sess.run(a + b))
42
###################################
# Run TensorFlow from the Command Line
...
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> print(sess.run(a + b))
42
###################################
# Run TensorFlow from the Command Line
###################################
>>> import os;
>>> import inspect;
>>> import tensorflow;
>>> print(os.path.dirname(inspect.getfile(tensorflow)));
/Users/tkmaemd/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow
>>> import os;
>>> import inspect;
>>> import tensorflow;
>>> print(os.path.dirname(inspect.getfile(tensorflow)));
/Users/tkmaemd/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow
(tensorflow) NY-C02MW0YGFD58:~ tkmaemd$ python -c 'import os; import inspect; import tensorflow; print(os.path.dirname(inspect.getfile(tensorflow)))'
/Users/tkmaemd/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow
###################################
# Basic Usage
###################################
TensorFlow programs are usually structured into a construction phase, that assembles a graph, and an execution phase that uses a session to execute ops in the graph.
For example, it is common to create a graph to represent and train a neural network in the construction phase, and then repeatedly execute a set of training ops in the graph in the execution phase.
# Building the graph
# Basic Usage
###################################
TensorFlow programs are usually structured into a construction phase, that assembles a graph, and an execution phase that uses a session to execute ops in the graph.
For example, it is common to create a graph to represent and train a neural network in the construction phase, and then repeatedly execute a set of training ops in the graph in the execution phase.
# Building the graph
import tensorflow as tf
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
# Launch the default graph
sess = tf.Session()
result = sess.run(product)
print(result)
sess.close()
# Interactive Usage
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])
x.initializer.run()
sub = tf.sub(x, a)
print(sub.eval())
# ==> [-2. -1.]
sess.close()
# Variables
state = tf.Variable(0, name="counter")
one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
print(sess.run(state))
for _ in range(3):
sess.run(update)
print(sess.run(state))
# Fetches
input1 = tf.constant([3.0])
input2 = tf.constant([2.0])
input3 = tf.constant([5.0])
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)
with tf.Session() as sess:
result = sess.run([mul, intermed])
print(result)
# Feeds
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1, input2)
with tf.Session() as sess:
print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))
packages/tensorflow/models/image/mnist
print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))
###################################
# Hello World
# Hello World
###################################
import tensorflow as tf
h = tf.constant("Hello")
w = tf.constant(" World!")
hw = h + w
with tf.Session() as less:
ans = sess.run(hw)
print ans
###################################
# Run a TensorFlow demo model
###################################
cd /Users/tkmaemd/anaconda/envs/tensorflow/lib/python2.7/site-# Run a TensorFlow demo model
###################################
packages/tensorflow/models/image/mnist
###################################
# Introduction
###################################
source activate py35
source activate tensor flow
ipython
source deactivate tensor flow
source deactivate py35
import tensorflow as tf
import numpy as np
# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3
# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
# Before starting, initialize the variables. We will 'run' this first.
init = tf.global_variables_initializer()
# Launch the graph.
sess = tf.Session()
sess.run(init)
# Fit the line.
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(w), sess.run(b))
# Learns best fit is W: [0.1], b: [0.3]
# Introduction
###################################
source activate py35
source activate tensor flow
ipython
source deactivate tensor flow
source deactivate py35
import tensorflow as tf
import numpy as np
# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3
# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
# Before starting, initialize the variables. We will 'run' this first.
init = tf.global_variables_initializer()
# Launch the graph.
sess = tf.Session()
sess.run(init)
# Fit the line.
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(w), sess.run(b))
# Learns best fit is W: [0.1], b: [0.3]
No comments:
Post a Comment