Tuesday, January 10, 2017

Mastering Social Media Mining 1 - Python tools for data science


Machine learning

#################################################################################
# Chap01/demo_sklearn.py
#################################################################################

 from sklearn import datasets 
 from sklearn.cluster import Means 
 import matplotlib.pyplot as pet 

 if __name__ == '__main__': 
 # Load the data 
 iris = datasets.load_iris() 
 X = iris.data 
 petal_length = X[:, 2] 
 petal_width = X[:, 3] 
 true_labels = iris.target 

 # Apply KMeans clustering 
 estimator = KMeans(n_clusters=3) 
 estimator.fit(X) 
 predicted_labels = estimator.labels_ 

 # Color scheme definition: red, yellow and blue 
 color_scheme = ['r', 'y', 'b'] 

 # Markers definition: circle, "x" and "plus" 
 marker_list = ['o', 'x', '+'] 

 # Assign colors/markers to the predicted labels 
 colors_predicted_labels = [color_scheme [lab] for lab in predicted_labels] 
 markers_predicted = [marker_list[lab] for lab in predicted_labels] 

 # Assign colors/markers to the true labels 
 colors_true_labels = [color_scheme[lab] for lab in true_labels] 
 markers_true = [marker_list[lab] for lab in true_labels] 

 # Plot and save the two scatter plots 
 for x, y, c, m in zip(petal_width, petal_length, colors_predicted_labels, markers_predicted): plt.scatter(x, y, c=c, marker=m) 
plt.savefig('iris_clusters.png') 

for x, y, c, m in zip(petal_width, petal_length, colors_true_labels, markers_true): 
plt.scatter(x, y, c=c, marker=m) 
 plt.savefig('iris_true_labels.png') 
 print(iris.target_names) 

Natural language processing
#################################################################################

Social network analysis

pip install networks

#################################################################################
# Chap01/demo_networkx.py
 import networkx as nx 
from datetime import date time 

if __name__ == '__main__': 
g = nx.Graph() 
g.add_node("John", {'name': 'John', 'age': 25}) 
g.add_node("Peter", {'name': 'Peter', 'age': 35}) 
g.add_node("Mary", {'name': 'Mary', 'age': 31}) 
g.add_node("Lucy", {'name': 'Lucy', 'age': 19}) 

g.add_edge("John", "Mary", {'since': datetime.today()}) 
g.add_edge("John", "Peter", {'since': datetime(1990, 7, 30)}) 
g.add_edge("Mary", "Lucy", {'since': datetime(2010, 8, 10)}) 
print(g.nodes()) 
print(g.edges()) 
print(g.has_edge("Lucy", "Mary"))



Processing data in Python

#################################################################################
# Chap01/demo_json.py

import json 

if __name__ == '__main__': 
user_json = '{"user_id": "1", "name": "Marco"}' 
user_data = json.loads(user_json) 

print(user_data['name']) # Marco 
user_data['likes'] = ['Python', 'Data Mining'] 
user_json = json.dumps(user_data, indent=4) 
print(user_json)

3 comments:

  1. This comment has been removed by the author.

    ReplyDelete
  2. Well Done ! the blog is great and Interactive it is about Mastering Social Media Mining 1 - Python tools for data science it is useful for students and Python Developers for more updates on python follow the link

    Python Online training hyderabad

    For more info on other technologies go with below links

    tableau online course Bangalore

    ServiceNow Online Training

    mulesoft Online Training

    ReplyDelete

Blog Archive