import pyprind
import pandas as pd
import os
pbar = pyprind.ProgBar(50000)
labels = {'pos':1, 'neg':0}
df = pd.DataFrame()
for s in ('test', 'train'):
for l in ('pos', 'neg'):
path ='./aclImdb/%s/%s' % (s, l)
for file in os.listdir(path):
with open(os.path.join(path, file), 'r') as infile:
txt = infile.read()
df = df.append([[txt, labels[l]]], ignore_index=True)
pbar.update()
df.columns = ['review', 'sentiment']
import numpy as np
np.random.seed(0)
df = df.reindex(np.random.permutation(df.index))
df.to_csv('./movie_data.csv', index=False)
df = pd.read_csv('./movie_data.csv')
df.head(3)
-- Introducing the bag-of-words model
Transforming words into feature vectors
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
count = CountVectorizer()
docs = np.array([
'The sun is shining',
'The weather is sweet',
'The sun is shining and the weather is sweet'])
bag = count.fit_transform(docs)
print(count.vocabulary_)
print(bag.toarray())
Assessing word relevancy via term frequency-inverse document frequency
from sklearn.feature_extraction.text import TfidfTransformer
tfidf = TfidfTransformer()
np.set_printoptions(precision=2)
print(tfidf.fit_transform(count.fit_transform(docs)).toarray())
Cleaning text data
df.loc[0, 'review'][-50:]
'is seven.<br /><br />Title (Brazil): Not Available'
import re
def preprocessor(text):
text = re.sub('<[^>]*>', '', text)
emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text)
text = re.sub('[\W]+', ' ', text.lower()) + \ '.join(emoticons).replace('-', '')
return text
preprocessor(df.loc[0, 'review'][-50:])
'is seven title brazil not available'
preprocessor("</a>This :) is :( a test :-)!")
'this is a test :) :( :)'
df['review'] = df['review'].apply(preprocessor)
Processing documents into tokens
def tokenizer(text):
return text.split()
tokenizer('runners like running and thus they run')
from nltk.stem.porter import PorterStemmer
porter = PorterStemmer()
def tokenizer_porter(text):
return [porter.stem(word) for word in text.split()]
tokenizer_porter('runners like running and thus they run')
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
stop = stopwords.words('english')
[w for w in tokenizer_porter('a runner likes running and runs a lot')[-10:] if w not in stop]
-- Training a logistic regression model for document classification
X_train = df.loc[:25000, 'review'].values
y_train = df.loc[:25000, 'sentiment'].values
X_test = df.loc[25000:, 'review'].values
y_test = df.loc[25000:, 'sentiment'].values
from sklearn.grid_search import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf = TfidfVectorizer(strip_accents=None,
lowercase=False,
preprocessor=None)
param_grid = [{'vect__ngram_range': [(1,1)],
'vect__stop_words': [stop, None],
'vect__tokenizer': [tokenizer,
tokenizer_porter],
'clf__penalty': ['l1', 'l2'],
'clf__C': [1.0, 10.0, 100.0]},
{'vect__ngram_range': [(1,1)],
'vect__stop_words': [stop, None],
'vect__tokenizer': [tokenizer,
tokenizer_porter],
'vect__use_idf':[False],
'vect__norm':[None],
'clf__penalty': ['l1', 'l2'],
'clf__C': [1.0, 10.0, 100.0]}
]
lr_tfidf = Pipeline([('vect', tfidf),
('clf',
LogisticRegression(random_state=0))])
gs_lr_tfidf = GridSearchCV(lr_tfidf, param_grid,
scoring='accuracy',
cv=5, verbose=1,
n_jobs=-1)
gs_lr_tfidf.fit(X_train, y_train)
print('Best parameter set: %s ' % gs_lr_tfidf.best_params_)
print('CV Accuracy: %.3f'
% gs_lr_tfidf.best_score_)
clf = gs_lr_tfidf.best_estimator_
print('Test Accuracy: %.3f'
% clf.score(X_test, y_test))
-- Working with bigger data - online algorithms and out-of-core learning
import numpy as np
import re
from nltk.corpus import stopwords
stop = stopwords.words('english')
def tokenizer(text):
text = re.sub('<[^>]*>', '', text)
emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)',
text.lower())
text = re.sub('[\W]+', ' ', text.lower()) \
+ ' '.join(emoticons).replace('-', '')
tokenized = [w for w in text.split() if w not in stop]
return tokenized
def stream_docs(path):
with open(path, 'r') as csv:
next(csv) # skip header
for line in csv:
text, label = line[:-3], int(line[-2])
yield text, label
next(stream_docs(path='./movie_data.csv'))
def get_minibatch(doc_stream, size):
docs, y = [], []
try:
for _ in range(size):
text, label = next(doc_stream)
docs.append(text)
y.append(label)
except StopIteration:
return None, None
return docs, y
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier
vect = HashingVectorizer(decode_error='ignore',
n_features=2**21,
preprocessor=None,
tokenizer=tokenizer)
clf = SGDClassifier(loss='log', random_state=1, n_iter=1)
doc_stream = stream_docs(path='./movie_data.csv')
import pyprind
pbar = pyprind.ProgBar(45)
classes = np.array([0, 1])
for _ in range(45):
X_train, y_train = get_minibatch(doc_stream, size=1000)
if not X_train:
break
X_train = vect.transform(X_train)
clf.partial_fit(X_train, y_train, classes=classes)
pbar.update()
X_test, y_test = get_minibatch(doc_stream, size=5000)
X_test = vect.transform(X_test)
print('Accuracy: %.3f' % clf.score(X_test, y_test))
Nice blog thanki you for sharing python Online Training
ReplyDelete