Sunday, April 30, 2017

Basic Boostrap

Q: How to derive distribution estimates based on relatively small sample?

A: Using bootstrap to derive a statistic or model parameter.

The basic idea of bootstrapping is that inference about a population from sample data, (sample → population), can be modeled by resampling the sample data and performing inference about a sample from resampled data, (resampled → sample).

Bootstrap does not necessarily involve any assumptions about the data, or the sample statistic, being normally distributed. In practice, it is not necessary to actually replicate the sample a huge number of times. We simply replace each observation after each draw—we sample with replacement. In this way, we effectively create an infinite population in which the probability of an element being drawn remains unchanged from draw to draw. The algorithm for a bootstrap resampling of the mean is as follows, for a sample of size N:
  1.  Draw a sample value, record, replace it
  2.  Repeat N times
  3.  Record the mean of the N resampled values
  4.  Repeat steps 1-3 B times
  5.  Use the B results to:
    1.  Calculate their standard deviation (this estimates sample mean standard error)
    2.  Produce a histogram or boxplot
    3.  Find a confidence interval

Thursday, March 30, 2017

Facebook Prophet

pip install pystan

pip install fbprophet


import pandas as pd
import numpy as np
from fbprophet import Prophet
import matplotlib.pyplot as plt


df = pd.read_csv("~/downloads/res2.csv", index_col=[0])
df.head(2)

data = pd.DataFrame({'ds': df.dt,
                   'y': np.log(df['amount'])})
data.head(2)


m = Prophet()
m.fit(data)


future = m.make_future_dataframe(periods=4)
future.tail()


forecast = m.predict(future)
forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

m.plot(forecast)

m.plot_components(forecast);
plt.show()




Friday, February 24, 2017

Neural Networks and Deep Learning 3 - DNN

import numpy as np
import numpy.random as rnd
import os

import matplotlib
import matplotlib.pyplot as plt

Activation Functions

def logit(z):
    return 1/(1+np.exp(-z))

z = np.linspace(-5, 5, 200)

plt.plot([-5, 5], [0, 0], 'k-')
plt.plot([-5, 5], [1, 1], 'k--')
plt.plot([0, 0], [-0.2, 1.2], 'k-')
plt.plot([-5, 5], [-3/4, 7/4], 'g--')
plt.plot(z, logit(z), "b-", linewidth=2)
props = dict(facecolor='black', shrink=0.1)
plt.annotate('Saturating', xytext=(3.5, 0.7), xy=(5, 1), arrowprops=props, fontsize=14, ha="center")
plt.annotate('Saturating', xytext=(-3.5, 0.3), xy=(-5, 0), arrowprops=props, fontsize=14, ha="center")
plt.annotate('Linear', xytext=(2, 0.2), xy=(0, 0.5), arrowprops=props, fontsize=14, ha="center")
plt.grid(True)
plt.title("Sigmoid activation function", fontsize=14)
plt.axis([-5, 5, -0.2, 1.2])
plt.show()

def leaky_relu(z, alpha=0.01):
    return np.maximum(alpha*z, z)

plt.plot(z, leaky_relu(z, 0.05), "b-", linewidth=2)
plt.plot([-5, 5], [0, 0], 'k-')
plt.plot([0, 0], [-0.5, 4.2], 'k-')
plt.grid(True)
props = dict(facecolor='black', shrink=0.1)
plt.annotate('Leak', xytext=(-3.5, 0.5), xy=(-5, -0.2), arrowprops=props, fontsize=14, ha="center")
plt.title("Leaky ReLU activation function", fontsize=14)
plt.axis([-5, 5, -0.5, 4.2])
plt.show()

def elu(z, alpha=1):
    return np.where(z<0, alpha*(np.exp(z)-1), z)

plt.plot(z, elu(z), "b-", linewidth=2)
plt.plot([-5, 5], [0, 0], 'k-')
plt.plot([-5, 5], [-1, -1], 'k--')
plt.plot([0, 0], [-2.2, 3.2], 'k-')
plt.grid(True)
props = dict(facecolor='black', shrink=0.1)
plt.title(r"ELU activation function ($\alpha=1$)", fontsize=14)
plt.axis([-5, 5, -2.2, 3.2])
plt.show()


from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/")


def leaky_relu(z, name=None):
    return tf.maximum(0.01*z, z, name=name)

import tensorflow as tf

from tensorflow.contrib.layers import fully_connected

tf.reset_default_graph()

n_inputs = 28*28  # MNIST
n_hidden1 = 300
n_hidden2 = 100
n_outputs = 10
learning_rate = 0.01

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")

with tf.name_scope("dnn"):
    hidden1 = fully_connected(X, n_hidden1, activation_fn=leaky_relu, scope="hidden1")
    hidden2 = fully_connected(hidden1, n_hidden2, activation_fn=leaky_relu, scope="hidden2")
    logits = fully_connected(hidden2, n_outputs, activation_fn=None, scope="outputs")

with tf.name_scope("loss"):
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
    loss = tf.reduce_mean(xentropy, name="loss")

with tf.name_scope("train"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    training_op = optimizer.minimize(loss)

with tf.name_scope("eval"):
    correct = tf.nn.in_top_k(logits, y, 1)
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
   
init = tf.global_variables_initializer()
saver = tf.train.Saver()

n_epochs = 20
batch_size = 100

with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        for iteration in range(len(mnist.test.labels)//batch_size):
            X_batch, y_batch = mnist.train.next_batch(batch_size)
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
        acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})
        acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})
        print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

    save_path = saver.save(sess, "my_model_final.ckpt")

Batch Normalization

from tensorflow.contrib.layers import fully_connected, batch_norm
from tensorflow.contrib.framework import arg_scope

tf.reset_default_graph()

n_inputs = 28 * 28  # MNIST
n_hidden1 = 300
n_hidden2 = 100
n_outputs = 10
learning_rate = 0.01
momentum = 0.25

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")
is_training = tf.placeholder(tf.bool, shape=(), name='is_training')

with tf.name_scope("dnn"):
    he_init = tf.contrib.layers.variance_scaling_initializer()
    batch_norm_params = {
        'is_training': is_training,
        'decay': 0.9,
        'updates_collections': None,
        'scale': True,
    }

    with arg_scope(
            [fully_connected],
            activation_fn=tf.nn.elu,
            weights_initializer=he_init,
            normalizer_fn=batch_norm,
            normalizer_params=batch_norm_params):
        hidden1 = fully_connected(X, n_hidden1, scope="hidden1")
        hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")
        logits = fully_connected(hidden2, n_outputs, activation_fn=None, scope="outputs")

with tf.name_scope("loss"):
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
    loss = tf.reduce_mean(xentropy, name="loss")

with tf.name_scope("train"):
    optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
    training_op = optimizer.minimize(loss)

with tf.name_scope("eval"):
    correct = tf.nn.in_top_k(logits, y, 1)
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
   
init = tf.global_variables_initializer()
saver = tf.train.Saver()


n_epochs = 20
batch_size = 50

with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        for iteration in range(len(mnist.test.labels)//batch_size):
            X_batch, y_batch = mnist.train.next_batch(batch_size)
            sess.run(training_op, feed_dict={is_training: True, X: X_batch, y: y_batch})
        acc_train = accuracy.eval(feed_dict={is_training: False, X: X_batch, y: y_batch})
        acc_test = accuracy.eval(feed_dict={is_training: False, X: mnist.test.images, y: mnist.test.labels})
        print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

save_path = saver.save(sess, "my_model_final.ckpt")


tf.reset_default_graph()

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")
is_training = tf.placeholder(tf.bool, shape=(), name='is_training')

with tf.name_scope("dnn"):
    he_init = tf.contrib.layers.variance_scaling_initializer()
    batch_norm_params = {
        'is_training': is_training,
        'decay': 0.9,
        'updates_collections': None,
        'scale': True,
    }

    with arg_scope(
            [fully_connected],
            activation_fn=tf.nn.elu,
            weights_initializer=he_init,
            normalizer_fn=batch_norm,
            normalizer_params=batch_norm_params,
            weights_regularizer=tf.contrib.layers.l1_regularizer(0.01)):
        hidden1 = fully_connected(X, n_hidden1, scope="hidden1")
        hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")
        logits = fully_connected(hidden2, n_outputs, activation_fn=None, scope="outputs")

with tf.name_scope("loss"):
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
    reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
    base_loss = tf.reduce_mean(xentropy, name="base_loss")
    loss = tf.add(base_loss, reg_losses, name="loss")

with tf.name_scope("train"):
    optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
    training_op = optimizer.minimize(loss)

with tf.name_scope("eval"):
    correct = tf.nn.in_top_k(logits, y, 1)
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
   
init = tf.global_variables_initializer()
saver = tf.train.Saver()

Gradient Clipping

n_epochs = 20
batch_size = 50

with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        for iteration in range(len(mnist.test.labels)//batch_size):
            X_batch, y_batch = mnist.train.next_batch(batch_size)
            sess.run(training_op, feed_dict={is_training: True, X: X_batch, y: y_batch})
        acc_train = accuracy.eval(feed_dict={is_training: False, X: X_batch, y: y_batch})
        acc_test = accuracy.eval(feed_dict={is_training: False, X: mnist.test.images, y: mnist.test.labels})
        print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

    save_path = saver.save(sess, "my_model_final.ckpt")

[v.name for v in tf.global_variables()]


with tf.variable_scope("", default_name="", reuse=True):  # root scope
    weights1 = tf.get_variable("hidden1/weights")
    weights2 = tf.get_variable("hidden2/weights")

tf.reset_default_graph()

x = tf.constant([0., 0., 3., 4., 30., 40., 300., 400.], shape=(4, 2))
c = tf.clip_by_norm(x, clip_norm=10)
c0 = tf.clip_by_norm(x, clip_norm=350, axes=0)
c1 = tf.clip_by_norm(x, clip_norm=10, axes=1)

with tf.Session() as sess:
    xv = x.eval()
    cv = c.eval()
    c0v = c0.eval()
    c1v = c1.eval()

print(xv)

print(cv)

print(np.linalg.norm(cv))

print(c0v)

print(np.linalg.norm(c0v, axis=0))

print(c1v)

print(np.linalg.norm(c1v, axis=1))


tf.reset_default_graph()

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")
is_training = tf.placeholder(tf.bool, shape=(), name='is_training')

def max_norm_regularizer(threshold, axes=1, name="max_norm", collection="max_norm"):
    def max_norm(weights):
        clip_weights = tf.assign(weights, tf.clip_by_norm(weights, clip_norm=threshold, axes=axes), name=name)
        tf.add_to_collection(collection, clip_weights)
        return None # there is no regularization loss term
    return max_norm

with tf.name_scope("dnn"):
    with arg_scope(
            [fully_connected],
            weights_regularizer=max_norm_regularizer(1.5)):
        hidden1 = fully_connected(X, n_hidden1, scope="hidden1")
        hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")
        logits = fully_connected(hidden2, n_outputs, activation_fn=None, scope="outputs")

clip_all_weights = tf.get_collection("max_norm")
       
with tf.name_scope("loss"):
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
    loss = tf.reduce_mean(xentropy, name="loss")

with tf.name_scope("train"):
    optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
    threshold = 1.0
    grads_and_vars = optimizer.compute_gradients(loss)
    capped_gvs = [(tf.clip_by_value(grad, -threshold, threshold), var)
                  for grad, var in grads_and_vars]
    training_op = optimizer.apply_gradients(capped_gvs)

with tf.name_scope("eval"):
    correct = tf.nn.in_top_k(logits, y, 1)
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
   
init = tf.global_variables_initializer()
saver = tf.train.Saver()

n_epochs = 20
batch_size = 50

with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        for iteration in range(len(mnist.test.labels)//batch_size):
            X_batch, y_batch = mnist.train.next_batch(batch_size)
            sess.run(training_op, feed_dict={is_training: True, X: X_batch, y: y_batch})
        acc_train = accuracy.eval(feed_dict={is_training: False, X: X_batch, y: y_batch})
        acc_test = accuracy.eval(feed_dict={is_training: False, X: mnist.test.images, y: mnist.test.labels})
        print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

    save_path = saver.save(sess, "my_model_final.ckpt")

Dropout

from tensorflow.contrib.layers import dropout

tf.reset_default_graph()

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")
is_training = tf.placeholder(tf.bool, shape=(), name='is_training')

initial_learning_rate = 0.1
decay_steps = 10000
decay_rate = 1/10
global_step = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step,
                                           decay_steps, decay_rate)

keep_prob = 0.5

with tf.name_scope("dnn"):
    he_init = tf.contrib.layers.variance_scaling_initializer()
    with arg_scope(
            [fully_connected],
            activation_fn=tf.nn.elu,
            weights_initializer=he_init):
        X_drop = dropout(X, keep_prob, is_training=is_training)
        hidden1 = fully_connected(X_drop, n_hidden1, scope="hidden1")
        hidden1_drop = dropout(hidden1, keep_prob, is_training=is_training)
        hidden2 = fully_connected(hidden1_drop, n_hidden2, scope="hidden2")
        hidden2_drop = dropout(hidden2, keep_prob, is_training=is_training)
        logits = fully_connected(hidden2_drop, n_outputs, activation_fn=None, scope="outputs")

with tf.name_scope("loss"):
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
    loss = tf.reduce_mean(xentropy, name="loss")

with tf.name_scope("train"):
    optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
    training_op = optimizer.minimize(loss, global_step=global_step)  

with tf.name_scope("eval"):
    correct = tf.nn.in_top_k(logits, y, 1)
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
   
init = tf.global_variables_initializer()
saver = tf.train.Saver()

n_epochs = 20
batch_size = 50

with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        for iteration in range(len(mnist.test.labels)//batch_size):
            X_batch, y_batch = mnist.train.next_batch(batch_size)
            sess.run(training_op, feed_dict={is_training: True, X: X_batch, y: y_batch})
        acc_train = accuracy.eval(feed_dict={is_training: False, X: X_batch, y: y_batch})
        acc_test = accuracy.eval(feed_dict={is_training: False, X: mnist.test.images, y: mnist.test.labels})
        print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

    save_path = saver.save(sess, "my_model_final.ckpt")

train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                               scope="hidden[2]|outputs")

training_op2 = optimizer.minimize(loss, var_list=train_vars)


for i in tf.global_variables():
    print(i.name)

for i in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
    print(i.name)


for i in train_vars:
    print(i.name)



Thursday, February 23, 2017

Neural Networks and Deep Learning 2 - ANN

import numpy as np
import numpy.random as rnd
import os
import matplotlib
import matplotlib.pyplot as plt


Perceptrons

from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data[:,(2,3)]
y = (iris.target == 0).astype(np.int)

from sklearn.linear_model import Perceptron

per_clf = Perceptron(random_state=42)
per_clf.fit(X, y)
y_pred = per_clf.predict([[2, 0.5]])
y_pred

a = -per_clf.coef_[0][0] / per_clf.coef_[0][1]
b = -per_clf.intercept_ / per_clf.coef_[0][1]

axes = [0, 5, 0, 2]

x0, x1 = np.meshgrid(
        np.linspace(axes[0], axes[1], 500).reshape(-1, 1),
        np.linspace(axes[2], axes[3], 200).reshape(-1, 1),
    )
X_new = np.c_[x0.ravel(), x1.ravel()]
y_predict = per_clf.predict(X_new)
zz = y_predict.reshape(x0.shape)

plt.figure(figsize=(10, 4))
plt.plot(X[y==0, 0], X[y==0, 1], "bs", label="Not Iris-Setosa")
plt.plot(X[y==1, 0], X[y==1, 1], "yo", label="Iris-Setosa")

plt.plot([axes[0], axes[1]], [a * axes[0] + b, a * axes[1] + b], "k-", linewidth=3)
from matplotlib.colors import ListedColormap
custom_cmap = ListedColormap(['#9898ff', '#fafab0'])

plt.contourf(x0, x1, zz, cmap=custom_cmap, linewidth=5)
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.legend(loc="lower right", fontsize=14)
plt.axis(axes)
plt.show()

Activation Functions

def logit(z):
    return 1/(1+np.exp(-z))
def relu(z):
    return np.maximum(0,z)
def derivative(f, z, eps=0.000001):
    return (f(z + eps) - f(z - eps))/(2 * eps)
def tanh(z):
    return np.tanh(z)

z = np.linspace(-5, 5, 200)

plt.figure(figsize=(11,4))

plt.subplot(121)
plt.plot(z, np.sign(z), "r-", linewidth=2, label="Step")
plt.plot(z, logit(z), "g--", linewidth=2, label="Logit")
plt.plot(z, tanh(z), "b-", linewidth=2, label="Tanh")
plt.plot(z, relu(z), "m-.", linewidth=2, label="ReLU")
plt.grid(True)
plt.legend(loc="center right", fontsize=14)
plt.title("Activation functions", fontsize=14)
plt.axis([-5, 5, -1.2, 1.2])

plt.subplot(122)
plt.plot(z, derivative(np.sign, z), "r-", linewidth=2, label="Step")
plt.plot(0, 0, "ro", markersize=5)
plt.plot(0, 0, "rx", markersize=10)
plt.plot(z, derivative(logit, z), "g--", linewidth=2, label="Logit")
plt.plot(z, derivative(np.tanh, z), "b-", linewidth=2, label="Tanh")
plt.plot(z, derivative(relu, z), "m-.", linewidth=2, label="ReLU")
plt.grid(True)
#plt.legend(loc="center right", fontsize=14)
plt.title("Derivatives", fontsize=14)
plt.axis([-5, 5, -0.2, 1.2])

plt.show()


def heaviside(z):
    return (z >= 0).astype(z.dtype)

def sigmoid(z):
    return 1/(1+np.exp(-z))

def mlp_xor(x1, x2, activation=heaviside):
    return activation(-activation(x1 + x2 - 1.5) + activation(x1 + x2 - 0.5) - 0.5)

x1s = np.linspace(-0.2, 1.2, 100)
x2s = np.linspace(-0.2, 1.2, 100)
x1, x2 = np.meshgrid(x1s, x2s)

z1 = mlp_xor(x1, x2, activation=heaviside)
z2 = mlp_xor(x1, x2, activation=sigmoid)

plt.figure(figsize=(10,4))

plt.subplot(121)
plt.contourf(x1, x2, z1)
plt.plot([0, 1], [0, 1], "gs", markersize=20)
plt.plot([0, 1], [1, 0], "y^", markersize=20)
plt.grid(True)

plt.subplot(122)
plt.contourf(x1, x2, z2)
plt.plot([0, 1], [0, 1], "gs", markersize=20)
plt.plot([0, 1], [1, 0], "y^", markersize=20)
plt.grid(True)
plt.show()

Use TF.Learn 

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/")
X_train = mnist.train.images
X_test = mnist.test.images
y_train = mnist.train.labels.astype("int")
y_test = mnist.test.labels.astype("int")

import tensorflow as tf

feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input(X_train)
dnn_clf = tf.contrib.learn.DNNClassifier(hidden_units=[300, 100], n_classes=10,
                                         feature_columns=feature_columns)
dnn_clf.fit(x=X_train, y=y_train, batch_size=50, steps=40000)


from sklearn.metrics import accuracy_score

y_pred = list(dnn_clf.predict(X_test))
accuracy = accuracy_score(y_test, y_pred)
accuracy

from sklearn.metrics import log_loss

y_pred_proba = list(dnn_clf.predict_proba(X_test))
log_loss(y_test, y_pred_proba)

dnn_clf.evaluate(X_test, y_test)

Use Plain TensorFlor

import tensorflow as tf

def neuron_layer(X, n_neurons, name, activation=None):
    with tf.name_scope(name):
        n_inputs = int(X.get_shape()[1])
        stddev = 1 / np.sqrt(n_inputs)
        init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev)
        W = tf.Variable(init, name="weights")
        b = tf.Variable(tf.zeros([n_neurons]), name="biases")
        Z = tf.matmul(X, W) + b
        if activation=="relu":
            return tf.nn.relu(Z)
        else:
            return Z

tf.reset_default_graph()

n_inputs = 28*28  # MNIST
n_hidden1 = 300
n_hidden2 = 100
n_outputs = 10
learning_rate = 0.01

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")

with tf.name_scope("dnn"):
    hidden1 = neuron_layer(X, n_hidden1, "hidden1", activation="relu")
    hidden2 = neuron_layer(hidden1, n_hidden2, "hidden2", activation="relu")
    logits = neuron_layer(hidden2, n_outputs, "output")

with tf.name_scope("loss"):
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
    loss = tf.reduce_mean(xentropy, name="loss")

with tf.name_scope("train"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    training_op = optimizer.minimize(loss)

with tf.name_scope("eval"):
    correct = tf.nn.in_top_k(logits, y, 1)
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
 
init = tf.global_variables_initializer()
saver = tf.train.Saver()


n_epochs = 20
batch_size = 50

with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        for iteration in range(mnist.train.num_examples // batch_size):
            X_batch, y_batch = mnist.train.next_batch(batch_size)
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
        acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})
        acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})
        print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

    save_path = saver.save(sess, "./my_model_final.ckpt")


with tf.Session() as sess:
    saver.restore(sess, save_path) #"my_model_final.ckpt")
    X_new_scaled = mnist.test.images[:20]
    Z = logits.eval(feed_dict={X: X_new_scaled})
    print(np.argmax(Z, axis=1))
    print(mnist.test.labels[:20])

Use Fully connected 

tf.reset_default_graph()

from tensorflow.contrib.layers import fully_connected

n_inputs = 28*28  # MNIST
n_hidden1 = 300
n_hidden2 = 100
n_outputs = 10
learning_rate = 0.01

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")

with tf.name_scope("dnn"):
    hidden1 = fully_connected(X, n_hidden1, scope="hidden1")
    hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")
    logits = fully_connected(hidden2, n_outputs, activation_fn=None, scope="outputs")

with tf.name_scope("loss"):
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
    loss = tf.reduce_mean(xentropy, name="loss")

with tf.name_scope("train"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    training_op = optimizer.minimize(loss)

with tf.name_scope("eval"):
    correct = tf.nn.in_top_k(logits, y, 1)
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
 
init = tf.global_variables_initializer()
saver = tf.train.Saver()

n_epochs = 20
n_batches = 50

with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        for iteration in range(mnist.train.num_examples // batch_size):
            X_batch, y_batch = mnist.train.next_batch(batch_size)
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
        acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})
        acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})
        print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)
    save_path = saver.save(sess, "./my_model_final.ckpt")




Tuesday, February 21, 2017

Neural Networks and Deep Learning 1 - Up and Running with TensorFlow


import tensorflow as tf

tf.reset_default_graph()

x = tf.Variable(3, name='x')
y = tf.Variable(4, name='y')
f = x*x*y + y + 2
f

sess = tf.Session()
sess.run(x.initializer)
sess.run(y.initializer)
print(sess.run(f))
sess.close()

with tf.Session() as sess:
    x.initializer.run()
    y.initializer.run()
    result = f.eval()
result

init = tf.global_variables_initializer()
sess = tf.InteractiveSession()
init.run()
result = f.eval()
sess.close()
result

Managing Graphs

tf.reset_default_graph()
x1 = tf.Variable(1)
x1.graph is tf.get_default_graph()

graph = tf.Graph()
with graph.as_default():
    x2 = tf.Variable(2)
x2.graph is tf.get_default_graph()


x2.graph is graph
w = tf.constant(3)
x = w + 2
y = x + 5
z = x * 3

with tf.Session() as sess:
    print(x.eval())
    print(y.eval())
    print(z.eval())

with tf.Session() as sess:
    y_val, z_val = sess.run([y,z])
    print(y)
    print(z)


Linear Regression with TensorFlow

import numpy as np
import numpy.random as rnd
from sklearn.datasets import fetch_california_housing

housing = fetch_california_housing()
m,n = housing.data.shape
housing_data_plus_bias = np.c_[np.ones((m, 1)), housing.data]

Manually computing the gradient
tf.reset_default_graph()
X = tf.constant(housing_data_plus_bias, dtype=tf.float64, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float64, name="y")
XT = tf.transpose(X)
theta = tf.matmul(tf.matmul(tf.matrix_inverse(tf.matmul(XT, X)), XT), y)

with tf.Session() as sess:
    result = theta.eval()
print(result)

Compare with pure Numpy
X = housing_data_plus_bias
y = housing.target.reshape(-1, 1)
theta_numpy = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
print(theta_numpy)

Compare with Scikit-learn
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(housing.data, housing.target.reshape(-1, 1))
print(np.r_[lin_reg.intercept_.reshape(-1, 1), lin_reg.coef_.T])

Using Batch Gradient Descent

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_housing_data = scaler.fit_transform(housing.data)
scaled_housing_data_plus_bias = np.c_[np.ones((m, 1)), scaled_housing_data]

print(scaled_housing_data_plus_bias.shape)
print(scaled_housing_data_plus_bias.mean())
print(scaled_housing_data_plus_bias.mean(axis=0))
print(scaled_housing_data_plus_bias.mean(axis=1))

Manually Computing the Gradients

tf.reset_default_graph()
n_epochs = 1000
learning_rate = 0.01

X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
gradients = 2/m * tf.matmul(tf.transpose(X), error)
training_op = tf.assign(theta, theta - learning_rate * gradients)

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(n_epochs):
        if epoch % 100 == 0:
            print("Epoch", epoch, "MSE =", mse.eval())
        sess.run(training_op)
    best_theta = theta.eval()
print("Best theta:")
print(best_theta)


tf.reset_default_graph()
n_epochs = 1000
learning_rate = 0.01

X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
gradients = tf.gradients(mse, [theta])[0]
training_op = tf.assign(theta, theta - learning_rate * gradients)

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)

    for epoch in range(n_epochs):
        if epoch % 100 == 0:
            print("Epoch", epoch, "MSE =", mse.eval())
        sess.run(training_op)
    best_theta = theta.eval()
print("Best theta:")
print(best_theta)

Using the Gradient Descent Optimizer

tf.reset_default_graph()

n_epochs = 1000
learning_rate = 0.01

X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(mse)

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(n_epochs):
        if epoch % 100 == 0:
            print("Epoch", epoch, "MSE =", mse.eval())
        sess.run(training_op)
    best_theta = theta.eval()
print("Best theta:")
print(best_theta)

Using a momentum optimizer
tf.reset_default_graph()

n_epochs = 1000
learning_rate = 0.01

X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.25)
training_op = optimizer.minimize(mse)


init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(n_epochs):
        sess.run(training_op)
   
    best_theta = theta.eval()
print("Best theta:")
print(best_theta)

Feeding data to the training algorithm

Placeholder nodes
tf.reset_default_graph()
A = tf.placeholder(tf.float32, shape=(None, 3))
B = A + 5
with tf.Session() as sess:
    B_val_1 = B.eval(feed_dict={A: [[1, 2, 3]]})
    B_val_2 = B.eval(feed_dict={A: [[4, 5, 6], [7, 8, 9]]})

print(B_val_1)
print(B_val_2)

Mini-batch Gradient Descent

tf.reset_default_graph()

n_epochs = 1000
learning_rate = 0.01

X = tf.placeholder(tf.float32, shape=(None, n + 1), name="X")
y = tf.placeholder(tf.float32, shape=(None, 1), name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(mse)

init = tf.global_variables_initializer()

def fetch_batch(epoch, batch_index, batch_size):
    rnd.seed(epoch * n_batches + batch_index)
    indices = rnd.randint(m, size=batch_size)
    X_batch = scaled_housing_data_plus_bias[indices]
    y_batch = housing.target.reshape(-1, 1)[indices]
    return X_batch, y_batch

n_epochs = 10
batch_size = 100
n_batches = int(np.ceil(m / batch_size))

with tf.Session() as sess:
    sess.run(init)

    for epoch in range(n_epochs):
        for batch_index in range(n_batches):
            X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch})

    best_theta = theta.eval()
print("Best theta:")
print(best_theta)

Saving and restoring a model

tf.reset_default_graph()

n_epochs = 1000
learning_rate = 0.01

X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(mse)

init = tf.global_variables_initializer()
saver = tf.train.Saver()

Visualizing the graph

with tf.Session() as sess:
    sess.run(init)

    for epoch in range(n_epochs):
        if epoch % 100 == 0:
            print("Epoch", epoch, "MSE =", mse.eval())
            save_path = saver.save(sess, "/tmp/my_model.ckpt")
        sess.run(training_op)
   
    best_theta = theta.eval()
    save_path = saver.save(sess, "my_model_final.ckpt")

print("Best theta:")
print(best_theta)

tf.reset_default_graph()

from datetime import datetime

now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
root_logdir = "tf_logs"
logdir = "{}/run-{}/".format(root_logdir, now)

n_epochs = 1000
learning_rate = 0.01

X = tf.placeholder(tf.float32, shape=(None, n + 1), name="X")
y = tf.placeholder(tf.float32, shape=(None, 1), name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(mse)

init = tf.global_variables_initializer()

mse_summary = tf.summary.scalar('MSE', mse)
summary_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())


n_epochs = 10
batch_size = 100
n_batches = int(np.ceil(m / batch_size))

with tf.Session() as sess:
    sess.run(init)

    for epoch in range(n_epochs):
        for batch_index in range(n_batches):
            X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)
            if batch_index % 10 == 0:
                summary_str = mse_summary.eval(feed_dict={X: X_batch, y: y_batch})
                step = epoch * n_batches + batch_index
                summary_writer.add_summary(summary_str, step)
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch})

    best_theta = theta.eval()

summary_writer.flush()
summary_writer.close()
print("Best theta:")
print(best_theta)

Modularity

tf.reset_default_graph()

now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
root_logdir = "tf_logs"
logdir = "{}/run-{}/".format(root_logdir, now)

n_epochs = 1000
learning_rate = 0.01

X = tf.placeholder(tf.float32, shape=(None, n + 1), name="X")
y = tf.placeholder(tf.float32, shape=(None, 1), name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
with tf.name_scope('loss') as scope:
    error = y_pred - y
    mse = tf.reduce_mean(tf.square(error), name="mse")
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(mse)

init = tf.global_variables_initializer()

mse_summary = tf.summary.scalar('MSE', mse)
summary_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())

n_epochs = 10
batch_size = 100
n_batches = int(np.ceil(m / batch_size))

with tf.Session() as sess:
    sess.run(init)

    for epoch in range(n_epochs):
        for batch_index in range(n_batches):
            X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)
            if batch_index % 10 == 0:
                summary_str = mse_summary.eval(feed_dict={X: X_batch, y: y_batch})
                step = epoch * n_batches + batch_index
                summary_writer.add_summary(summary_str, step)
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch})

    best_theta = theta.eval()

summary_writer.flush()
summary_writer.close()
print("Best theta:")
print(best_theta)

print(error.op.name)

print(mse.op.name)

tf.reset_default_graph()

a1 = tf.Variable(0, name="a")      # name == "a"
a2 = tf.Variable(0, name="a")      # name == "a_1"

with tf.name_scope("param"):       # name == "param"
    a3 = tf.Variable(0, name="a")  # name == "param/a"

with tf.name_scope("param"):       # name == "param_1"
    a4 = tf.Variable(0, name="a")  # name == "param_1/a"

for node in (a1, a2, a3, a4):
    print(node.op.name)


tf.reset_default_graph()

n_features = 3
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")

w1 = tf.Variable(tf.random_normal((n_features, 1)), name="weights1")
w2 = tf.Variable(tf.random_normal((n_features, 1)), name="weights2")
b1 = tf.Variable(0.0, name="bias1")
b2 = tf.Variable(0.0, name="bias2")

linear1 = tf.add(tf.matmul(X, w1), b1, name="linear1")
linear2 = tf.add(tf.matmul(X, w2), b2, name="linear2")

relu1 = tf.maximum(linear1, 0, name="relu1")
relu2 = tf.maximum(linear1, 0, name="relu2")  # Oops, cut&paste error! Did you spot it?

output = tf.add_n([relu1, relu2], name="output")



tf.reset_default_graph()

def relu(X):
    w_shape = int(X.get_shape()[1]), 1
    w = tf.Variable(tf.random_normal(w_shape), name="weights")
    b = tf.Variable(0.0, name="bias")
    linear = tf.add(tf.matmul(X, w), b, name="linear")
    return tf.maximum(linear, 0, name="relu")

n_features = 3
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
relus = [relu(X) for i in range(5)]
output = tf.add_n(relus, name="output")
summary_writer = tf.summary.FileWriter("logs/relu1", tf.get_default_graph())



tf.reset_default_graph()

def relu(X):
    with tf.name_scope("relu"):
        w_shape = int(X.get_shape()[1]), 1
        w = tf.Variable(tf.random_normal(w_shape), name="weights")
        b = tf.Variable(0.0, name="bias")
        linear = tf.add(tf.matmul(X, w), b, name="linear")
        return tf.maximum(linear, 0, name="max")

n_features = 3
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
relus = [relu(X) for i in range(5)]
output = tf.add_n(relus, name="output")

summary_writer = tf.summary.FileWriter("logs/relu2", tf.get_default_graph())


summary_writer.close()


tf.reset_default_graph()

def relu(X, threshold):
    with tf.name_scope("relu"):
        w_shape = int(X.get_shape()[1]), 1
        w = tf.Variable(tf.random_normal(w_shape), name="weights")
        b = tf.Variable(0.0, name="bias")
        linear = tf.add(tf.matmul(X, w), b, name="linear")
        return tf.maximum(linear, threshold, name="max")

threshold = tf.Variable(0.0, name="threshold")
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
relus = [relu(X, threshold) for i in range(5)]
output = tf.add_n(relus, name="output")


tf.reset_default_graph()

def relu(X):
    with tf.name_scope("relu"):
        if not hasattr(relu, "threshold"):
            relu.threshold = tf.Variable(0.0, name="threshold")
        w_shape = int(X.get_shape()[1]), 1
        w = tf.Variable(tf.random_normal(w_shape), name="weights")
        b = tf.Variable(0.0, name="bias")
        linear = tf.add(tf.matmul(X, w), b, name="linear")
        return tf.maximum(linear, relu.threshold, name="max")

X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
relus = [relu(X) for i in range(5)]
output = tf.add_n(relus, name="output")


tf.reset_default_graph()

def relu(X):
    with tf.variable_scope("relu", reuse=True):
        threshold = tf.get_variable("threshold", shape=(), initializer=tf.constant_initializer(0.0))
        w_shape = int(X.get_shape()[1]), 1
        w = tf.Variable(tf.random_normal(w_shape), name="weights")
        b = tf.Variable(0.0, name="bias")
        linear = tf.add(tf.matmul(X, w), b, name="linear")
        return tf.maximum(linear, threshold, name="max")

X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
with tf.variable_scope("relu"):
    threshold = tf.get_variable("threshold", shape=(), initializer=tf.constant_initializer(0.0))
relus = [relu(X) for i in range(5)]
output = tf.add_n(relus, name="output")

summary_writer = tf.summary.FileWriter("logs/relu6", tf.get_default_graph())
summary_writer.close()


tf.reset_default_graph()

def relu(X):
    with tf.variable_scope("relu"):
        threshold = tf.get_variable("threshold", shape=(), initializer=tf.constant_initializer(0.0))
        w_shape = int(X.get_shape()[1]), 1
        w = tf.Variable(tf.random_normal(w_shape), name="weights")
        b = tf.Variable(0.0, name="bias")
        linear = tf.add(tf.matmul(X, w), b, name="linear")
        return tf.maximum(linear, threshold, name="max")

X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
with tf.variable_scope("", default_name="") as scope:
    first_relu = relu(X)     # create the shared variable
    scope.reuse_variables()  # then reuse it
    relus = [first_relu] + [relu(X) for i in range(4)]
output = tf.add_n(relus, name="output")

summary_writer = tf.summary.FileWriter("logs/relu8", tf.get_default_graph())
summary_writer.close()


tf.reset_default_graph()

with tf.variable_scope("param"):
    x = tf.get_variable("x", shape=(), initializer=tf.constant_initializer(0.))
    #x = tf.Variable(0., name="x")
with tf.variable_scope("param", reuse=True):
    y = tf.get_variable("x")

with tf.variable_scope("", default_name="", reuse=True):
    z = tf.get_variable("param/x", shape=(), initializer=tf.constant_initializer(0.))

print(x is y)
print(x.op.name)
print(y.op.name)
print(z.op.name)

Monday, February 20, 2017

Machine Learning with Scikit-Learn 8 - Dimensionality Reduction

import numpy as np
import numpy.random as rnd
import os

import matplotlib
import matplotlib.pyplot as plt

Projection

rnd.seed(4)
m = 60
w1, w2 = 0.1, 0.3
noise = 0.1

angles = rnd.rand(m) * 3 * np.pi / 2 - 0.5
X = np.empty((m, 3))
X[:, 0] = np.cos(angles) + np.sin(angles)/2 + noise * rnd.randn(m) / 2
X[:, 1] = np.sin(angles) * 0.7 + noise * rnd.randn(m) / 2
X[:, 2] = X[:, 0] * w1 + X[:, 1] * w2 + noise * rnd.randn(m)

X = X - X.mean(axis=0)

from sklearn.decomposition import PCA

pca = PCA(n_components = 2)
X2D = pca.fit_transform(X)
X2D_inv = pca.inverse_transform(X2D)

from matplotlib.patches import FancyArrowPatch
from mpl_toolkits.mplot3d import proj3d

class Arrow3D(FancyArrowPatch):
    def __init__(self, xs, ys, zs, *args, **kwargs):
        FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs)
        self._verts3d = xs, ys, zs

    def draw(self, renderer):
        xs3d, ys3d, zs3d = self._verts3d
        xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M)
        self.set_positions((xs[0],ys[0]),(xs[1],ys[1]))
        FancyArrowPatch.draw(self, renderer)

axes = [-1.8, 1.8, -1.3, 1.3, -1.0, 1.0]

x1s = np.linspace(axes[0], axes[1], 10)
x2s = np.linspace(axes[2], axes[3], 10)
x1, x2 = np.meshgrid(x1s, x2s)

C = pca.components_
R = C.T.dot(C)
z = (R[0, 2] * x1 + R[1, 2] * x2) / (1 - R[2, 2])

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(6, 3.8))
ax = fig.add_subplot(111, projection='3d')

X3D_above = X[X[:, 2] > X2D_inv[:, 2]]
X3D_below = X[X[:, 2] <= X2D_inv[:, 2]]

ax.plot(X3D_below[:, 0], X3D_below[:, 1], X3D_below[:, 2], "bo", alpha=0.5)

ax.plot_surface(x1, x2, z, alpha=0.2, color="k")
np.linalg.norm(C, axis=0)
ax.add_artist(Arrow3D([0, C[0, 0]],[0, C[0, 1]],[0, C[0, 2]], mutation_scale=15, lw=1, arrowstyle="-|>", color="k"))
ax.add_artist(Arrow3D([0, C[1, 0]],[0, C[1, 1]],[0, C[1, 2]], mutation_scale=15, lw=1, arrowstyle="-|>", color="k"))
ax.plot([0], [0], [0], "k.")

for i in range(m):
    if X[i, 2] > X2D_inv[i, 2]:
        ax.plot([X[i][0], X2D_inv[i][0]], [X[i][1], X2D_inv[i][1]], [X[i][2], X2D_inv[i][2]], "k-")
    else:
        ax.plot([X[i][0], X2D_inv[i][0]], [X[i][1], X2D_inv[i][1]], [X[i][2], X2D_inv[i][2]], "k-", color="#505050")
   
ax.plot(X2D_inv[:, 0], X2D_inv[:, 1], X2D_inv[:, 2], "k+")
ax.plot(X2D_inv[:, 0], X2D_inv[:, 1], X2D_inv[:, 2], "k.")
ax.plot(X3D_above[:, 0], X3D_above[:, 1], X3D_above[:, 2], "bo")
ax.set_xlabel("$x_1$", fontsize=18)
ax.set_ylabel("$x_2$", fontsize=18)
ax.set_zlabel("$x_3$", fontsize=18)
ax.set_xlim(axes[0:2])
ax.set_ylim(axes[2:4])
ax.set_zlim(axes[4:6])
plt.show()

fig = plt.figure()
ax = fig.add_subplot(111, aspect='equal')

ax.plot(X2D[:, 0], X2D[:, 1], "k+")
ax.plot(X2D[:, 0], X2D[:, 1], "k.")
ax.plot([0], [0], "ko")
ax.arrow(0, 0, 0, 1, head_width=0.05, length_includes_head=True, head_length=0.1, fc='k', ec='k')
ax.arrow(0, 0, 1, 0, head_width=0.05, length_includes_head=True, head_length=0.1, fc='k', ec='k')
ax.set_xlabel("$z_1$", fontsize=18)
ax.set_ylabel("$z_2$", fontsize=18, rotation=0)
ax.axis([-1.5, 1.3, -1.2, 1.2])
ax.grid(True)
plt.show()

Manifold Learning

from sklearn.datasets import make_swiss_roll
X, t = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)

axes = [-11.5, 14, -2, 23, -12, 15]
fig = plt.figure(figsize=(6, 5))
ax = fig.add_subplot(111, projection='3d')

ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=t, cmap=plt.cm.hot)
ax.view_init(10, -70)
ax.set_xlabel("$x_1$", fontsize=18)
ax.set_ylabel("$x_2$", fontsize=18)
ax.set_zlabel("$x_3$", fontsize=18)
ax.set_xlim(axes[0:2])
ax.set_ylim(axes[2:4])
ax.set_zlim(axes[4:6])
plt.show()


plt.figure(figsize=(11, 4))

plt.subplot(121)
plt.scatter(X[:, 0], X[:, 1], c=t, cmap=plt.cm.hot)
plt.axis(axes[:4])
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$x_2$", fontsize=18, rotation=0)
plt.grid(True)

plt.subplot(122)
plt.scatter(t, X[:, 1], c=t, cmap=plt.cm.hot)
plt.axis([4, 15, axes[2], axes[3]])
plt.xlabel("$z_1$", fontsize=18)
plt.grid(True)
plt.show()


from matplotlib import gridspec

axes = [-11.5, 14, -2, 23, -12, 15]

x2s = np.linspace(axes[2], axes[3], 10)
x3s = np.linspace(axes[4], axes[5], 10)
x2, x3 = np.meshgrid(x2s, x3s)

fig = plt.figure(figsize=(6, 5))
ax = plt.subplot(111, projection='3d')

positive_class = X[:, 0] > 5
X_pos = X[positive_class]
X_neg = X[~positive_class]
ax.view_init(10, -70)
ax.plot(X_neg[:, 0], X_neg[:, 1], X_neg[:, 2], "y^")
ax.plot_wireframe(5, x2, x3, alpha=0.5)
ax.plot(X_pos[:, 0], X_pos[:, 1], X_pos[:, 2], "gs")
ax.set_xlabel("$x_1$", fontsize=18)
ax.set_ylabel("$x_2$", fontsize=18)
ax.set_zlabel("$x_3$", fontsize=18)
ax.set_xlim(axes[0:2])
ax.set_ylim(axes[2:4])
ax.set_zlim(axes[4:6])
plt.show()

fig = plt.figure(figsize=(5, 4))
ax = plt.subplot(111)

plt.plot(t[positive_class], X[positive_class, 1], "gs")
plt.plot(t[~positive_class], X[~positive_class, 1], "y^")
plt.axis([4, 15, axes[2], axes[3]])
plt.xlabel("$z_1$", fontsize=18)
plt.ylabel("$z_2$", fontsize=18, rotation=0)
plt.grid(True)
plt.show()

fig = plt.figure(figsize=(6, 5))
ax = plt.subplot(111, projection='3d')

positive_class = 2 * (t[:] - 4) > X[:, 1]
X_pos = X[positive_class]
X_neg = X[~positive_class]
ax.view_init(10, -70)
ax.plot(X_neg[:, 0], X_neg[:, 1], X_neg[:, 2], "y^")
ax.plot(X_pos[:, 0], X_pos[:, 1], X_pos[:, 2], "gs")
ax.set_xlabel("$x_1$", fontsize=18)
ax.set_ylabel("$x_2$", fontsize=18)
ax.set_zlabel("$x_3$", fontsize=18)
ax.set_xlim(axes[0:2])
ax.set_ylim(axes[2:4])
ax.set_zlim(axes[4:6])
plt.show()

fig = plt.figure(figsize=(5, 4))
ax = plt.subplot(111)

plt.plot(t[positive_class], X[positive_class, 1], "gs")
plt.plot(t[~positive_class], X[~positive_class, 1], "y^")
plt.plot([4, 15], [0, 22], "b-", linewidth=2)
plt.axis([4, 15, axes[2], axes[3]])
plt.xlabel("$z_1$", fontsize=18)
plt.ylabel("$z_2$", fontsize=18, rotation=0)
plt.grid(True)
plt.show()

PCA

rnd.seed(4)
m = 60
w1, w2 = 0.1, 0.3
noise = 0.1

angles = rnd.rand(m) * 3 * np.pi / 2 - 0.5
X = np.empty((m, 3))
X[:, 0] = np.cos(angles) + np.sin(angles)/2 + noise * rnd.randn(m) / 2
X[:, 1] = np.sin(angles) * 0.7 + noise * rnd.randn(m) / 2
X[:, 2] = X[:, 0] * w1 + X[:, 1] * w2 + noise * rnd.randn(m)

X_centered = X - X.mean(axis=0)

angle = np.pi / 5
stretch = 5
m = 200

rnd.seed(3)
X = rnd.randn(m, 2) / 10
X = X.dot(np.array([[stretch, 0],[0, 1]])) # stretch
X = X.dot([[np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)]]) # rotate

u1 = np.array([np.cos(angle), np.sin(angle)])
u2 = np.array([np.cos(angle - 2 * np.pi/6), np.sin(angle - 2 * np.pi/6)])
u3 = np.array([np.cos(angle - np.pi/2), np.sin(angle - np.pi/2)])

X_proj1 = X.dot(u1.reshape(-1, 1))
X_proj2 = X.dot(u2.reshape(-1, 1))
X_proj3 = X.dot(u3.reshape(-1, 1))

plt.figure(figsize=(8,4))
plt.subplot2grid((3,2), (0, 0), rowspan=3)
plt.plot([-1.4, 1.4], [-1.4*u1[1]/u1[0], 1.4*u1[1]/u1[0]], "k-", linewidth=1)
plt.plot([-1.4, 1.4], [-1.4*u2[1]/u2[0], 1.4*u2[1]/u2[0]], "k--", linewidth=1)
plt.plot([-1.4, 1.4], [-1.4*u3[1]/u3[0], 1.4*u3[1]/u3[0]], "k:", linewidth=2)
plt.plot(X[:, 0], X[:, 1], "bo", alpha=0.5)
plt.axis([-1.4, 1.4, -1.4, 1.4])
plt.arrow(0, 0, u1[0], u1[1], head_width=0.1, linewidth=5, length_includes_head=True, head_length=0.1, fc='k', ec='k')
plt.arrow(0, 0, u3[0], u3[1], head_width=0.1, linewidth=5, length_includes_head=True, head_length=0.1, fc='k', ec='k')
plt.text(u1[0] + 0.1, u1[1] - 0.05, r"$\mathbf{c_1}$", fontsize=22)
plt.text(u3[0] + 0.1, u3[1], r"$\mathbf{c_2}$", fontsize=22)
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$x_2$", fontsize=18, rotation=0)
plt.grid(True)

plt.subplot2grid((3,2), (0, 1))
plt.plot([-2, 2], [0, 0], "k-", linewidth=1)
plt.plot(X_proj1[:, 0], np.zeros(m), "bo", alpha=0.3)
plt.gca().get_yaxis().set_ticks([])
plt.gca().get_xaxis().set_ticklabels([])
plt.axis([-2, 2, -1, 1])
plt.grid(True)

plt.subplot2grid((3,2), (1, 1))
plt.plot([-2, 2], [0, 0], "k--", linewidth=1)
plt.plot(X_proj2[:, 0], np.zeros(m), "bo", alpha=0.3)
plt.gca().get_yaxis().set_ticks([])
plt.gca().get_xaxis().set_ticklabels([])
plt.axis([-2, 2, -1, 1])
plt.grid(True)

plt.subplot2grid((3,2), (2, 1))
plt.plot([-2, 2], [0, 0], "k:", linewidth=2)
plt.plot(X_proj3[:, 0], np.zeros(m), "bo", alpha=0.3)
plt.gca().get_yaxis().set_ticks([])
plt.axis([-2, 2, -1, 1])
plt.xlabel("$z_1$", fontsize=18)
plt.grid(True)
plt.show()

PCA using SVD decomposition

m, n = X.shape

X_centered = X - X.mean(axis=0)
U, s, V = np.linalg.svd(X_centered)

c1 = V.T[:, 0]
c2 = V.T[:, 1]

S = np.zeros(X.shape)
S[:n, :n] = np.diag(s)

np.allclose(X, U.dot(S).dot(V))
T = X.dot(V.T[:, :2])

from sklearn.decomposition import PCA

pca = PCA(n_components = 2)
X2D_p = pca.fit_transform(X)
np.allclose(X2D_p, T)
X3D_recover = T.dot(V[:2, :])
np.allclose(X3D_recover, pca.inverse_transform(X2D_p))
V
pca.components_

R = pca.components_.T.dot(pca.components_)
S[:3]

pca.explained_variance_ratio_
1-pca.explained_variance_ratio_.sum()
np.sqrt((T[:, 1]**2).sum())

Choosing the right number of dimensions

from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_mldata

mnist = fetch_mldata('MNIST original')
X = mnist["data"]
y = mnist["target"]

X_train, X_test, y_train, y_test = train_test_split(X, y)
X = X_train

pca = PCA()
pca.fit(X)
d = np.argmax(np.cumsum(pca.explained_variance_ratio_) >= 0.95) + 1
d

pca = PCA(n_components=0.95)
X_reduced = pca.fit_transform(X)
pca.n_components_

np.sum(pca.explained_variance_ratio_)

X_mnist = X_train

PCA for Compression

pca = PCA(n_components = 154)
X_mnist_reduced = pca.fit_transform(X_mnist)
X_mnist_recovered = pca.inverse_transform(X_mnist_reduced)

def plot_digits(instances, images_per_row=5, **options):
    size = 28
    images_per_row = min(len(instances), images_per_row)
    images = [instance.reshape(size,size) for instance in instances]
    n_rows = (len(instances) - 1) // images_per_row + 1
    row_images = []
    n_empty = n_rows * images_per_row - len(instances)
    images.append(np.zeros((size, size * n_empty)))
    for row in range(n_rows):
        rimages = images[row * images_per_row : (row + 1) * images_per_row]
        row_images.append(np.concatenate(rimages, axis=1))
    image = np.concatenate(row_images, axis=0)
    plt.imshow(image, cmap = matplotlib.cm.binary, **options)
    plt.axis("off")

plt.figure(figsize=(7, 4))
plt.subplot(121)
plot_digits(X_mnist[::2100])
plt.title("Original", fontsize=16)
plt.subplot(122)
plot_digits(X_mnist_recovered[::2100])
plt.title("Compressed", fontsize=16)
plt.show()

Incremental PCA

from sklearn.decomposition import IncrementalPCA

n_batches = 100
inc_pca = IncrementalPCA(n_components=154)

for X_batch in np.array_split(X_mnist, n_batches):
    inc_pca.partial_fit(X_batch)

X_mnist_reduced = inc_pca.transform(X_mnist)

X_mnist_recovered_inc = inc_pca.inverse_transform(X_mnist_reduced)

plt.figure(figsize=(7, 4))
plt.subplot(121)
plot_digits(X_mnist[::2100])
plt.subplot(122)
plot_digits(X_mnist_recovered_inc[::2100])
plt.tight_layout()
plt.show()

np.allclose(pca.mean_, inc_pca.mean_)

np.allclose(X_mnist_reduced, X_mnist_reduced)

filename = "my_mnist.data"

X_mm = np.memmap(filename, dtype='float32', mode='write', shape=X_mnist.shape)
X_mm[:] = X_mnist
del X_mm

X_mm = np.memmap(filename, dtype='float32', mode='readonly', shape=X_mnist.shape)

batch_size = len(X_mnist) // n_batches
inc_pca = IncrementalPCA(n_components=154, batch_size=batch_size)
inc_pca.fit(X_mm)

rnd_pca = PCA(n_components=154, random_state=42, svd_solver="randomized")
X_reduced = rnd_pca.fit_transform(X_mnist)

import time

for n_components in (2, 10, 154):
    print("n_components =", n_components)
    regular_pca = PCA(n_components=n_components)
    inc_pca = IncrementalPCA(n_components=154, batch_size=500)
    rnd_pca = PCA(n_components=154, random_state=42, svd_solver="randomized")

    for pca in (regular_pca, inc_pca, rnd_pca):
        t1 = time.time()
        pca.fit(X_mnist)
        t2 = time.time()
        print(pca.__class__.__name__, t2 - t1, "seconds")

Kernel PCA

from sklearn.decomposition import KernelPCA

X, t = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)

lin_pca = KernelPCA(n_components = 2, kernel="linear", fit_inverse_transform=True)
rbf_pca = KernelPCA(n_components = 2, kernel="rbf", gamma=0.0433, fit_inverse_transform=True)
sig_pca = KernelPCA(n_components = 2, kernel="sigmoid", gamma=0.001, coef0=1, fit_inverse_transform=True)

y = t > 6.9

plt.figure(figsize=(11, 4))
for subplot, pca, title in ((131, lin_pca, "Linear kernel"), (132, rbf_pca, "RBF kernel, $\gamma=0.04$"), (133, sig_pca, "Sigmoid kernel, $\gamma=10^{-3}, r=1$")):
    X_reduced = pca.fit_transform(X)
    if subplot == 132:
        X_reduced_rbf = X_reduced
   
    plt.subplot(subplot)
    #plt.plot(X_reduced[y, 0], X_reduced[y, 1], "gs")
    #plt.plot(X_reduced[~y, 0], X_reduced[~y, 1], "y^")
    plt.title(title, fontsize=14)
    plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=t, cmap=plt.cm.hot)
    plt.xlabel("$z_1$", fontsize=18)
    if subplot == 131:
        plt.ylabel("$z_2$", fontsize=18, rotation=0)
    plt.grid(True)
plt.show()

from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV

clf = Pipeline([
        ("kpca", KernelPCA(n_components=2)),
        ("log_reg", LogisticRegression())
    ])

param_grid = [
        {"kpca__gamma": np.linspace(0.03, 0.05, 10), "kpca__kernel": ["rbf", "sigmoid"]}
    ]

grid_search = GridSearchCV(clf, param_grid, cv=3)
grid_search.fit(X, y)
grid_search.best_params_

rbf_pca = KernelPCA(n_components = 2, kernel="rbf", gamma=0.0433,
                    fit_inverse_transform=True)
X_reduced = rbf_pca.fit_transform(X)
X_preimage = rbf_pca.inverse_transform(X_reduced)

plt.figure(figsize=(6, 5))

X_inverse = pca.inverse_transform(X_reduced)

ax = plt.subplot(111, projection='3d')
ax.view_init(10, -70)
ax.scatter(X_inverse[:, 0], X_inverse[:, 1], X_inverse[:, 2], c=t, cmap=plt.cm.hot, marker="x")
ax.set_xlabel("")
ax.set_ylabel("")
ax.set_zlabel("")
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_zticklabels([])
plt.show()

X_reduced = rbf_pca.fit_transform(X)

plt.figure(figsize=(11, 4))
plt.subplot(132)
plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=t, cmap=plt.cm.hot, marker="x")
plt.xlabel("$z_1$", fontsize=18)
plt.ylabel("$z_2$", fontsize=18, rotation=0)
plt.grid(True)
plt.show()

from sklearn.metrics import mean_squared_error
mean_squared_error(X, X_preimage)

Locally-Linear Embedding

from sklearn.manifold import LocallyLinearEmbedding

X, t = make_swiss_roll(n_samples=1000, noise=0.2, random_state=41)

lle = LocallyLinearEmbedding(n_neighbors=10, n_components=2, random_state=42)
X_reduced = lle.fit_transform(X)

plt.title("Unrolled swiss roll using LLE", fontsize=14)
plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=t, cmap=plt.cm.hot)
plt.xlabel("$z_1$", fontsize=18)
plt.ylabel("$z_2$", fontsize=18)
plt.axis([-0.065, 0.055, -0.1, 0.12])
plt.grid(True)
plt.show()

Machine Learning with Scikit-Learn 7 - Ensemble


import numpy as np
import numpy.random as rnd
import os
import matplotlib
import matplotlib.pyplot as plt

Voting Classifiers

heads_proba = 0.51
coin_tosses = (rnd.rand(10000, 10) < heads_proba).astype(np.int32)
cumulative_heads_ratio = np.cumsum(coin_tosses, axis=0) / np.arange(1, 10001).reshape(-1, 1)

plt.figure(figsize=(8,3.5))
plt.plot(cumulative_heads_ratio)
plt.plot([0, 10000], [0.51, 0.51], "k--", linewidth=2, label="51%")
plt.plot([0, 10000], [0.5, 0.5], "k-", label="50%")
plt.xlabel("Number of coin tosses")
plt.ylabel("Heads ratio")
plt.legend(loc="lower right")
plt.axis([0, 10000, 0.42, 0.58])
plt.show()

from sklearn.model_selection import train_test_split
from sklearn.datasets import make_moons

X, y = make_moons(n_samples=500, noise=0.30, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier


log_clf = LogisticRegression(random_state=42)
rnd_clf = RandomForestClassifier(random_state=42)
svm_clf = SVC(probability=True, random_state=42)

voting_clf = VotingClassifier(
    estimators=[('lr', log_clf),('rf', rnd_clf),('svc', svm_clf)],
    voting='soft'
)
voting_clf.fit(X_train, y_train)


from sklearn.metrics import accuracy_score

for clf in (log_clf, rnd_clf, svm_clf, voting_clf):
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)
    print(clf.__class__.__name__, accuracy_score(y_test, y_pred))


Bagging and Pasting
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

bag_clf = BaggingClassifier(
        DecisionTreeClassifier(random_state=42), n_estimators=500,
        max_samples=100, bootstrap=True, n_jobs=-1, random_state=42
    )
bag_clf.fit(X_train, y_train)
y_pred = bag_clf.predict(X_test)
print(accuracy_score(y_test, y_pred))

tree_clf = DecisionTreeClassifier(random_state=42)
tree_clf.fit(X_train, y_train)
y_pred_tree = tree_clf.predict(X_test)
print(accuracy_score(y_test, y_pred_tree))

from matplotlib.colors import ListedColormap

def plot_decision_boundary(clf, X, y, axes=[-1.5, 2.5, -1, 1.5], alpha=0.5, contour=True):
    x1s = np.linspace(axes[0], axes[1], 100)
    x2s = np.linspace(axes[2], axes[3], 100)
    x1, x2 = np.meshgrid(x1s, x2s)
    X_new = np.c_[x1.ravel(), x2.ravel()]
    y_pred = clf.predict(X_new).reshape(x1.shape)
    custom_cmap = ListedColormap(['#fafab0','#9898ff','#a0faa0'])
    plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap, linewidth=10)
    if contour:
        custom_cmap2 = ListedColormap(['#7d7d58','#4c4c7f','#507d50'])
        plt.contour(x1, x2, y_pred, cmap=custom_cmap2, alpha=0.8)
    plt.plot(X[:, 0][y==0], X[:, 1][y==0], "yo", alpha=alpha)
    plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs", alpha=alpha)
    plt.axis(axes)
    plt.xlabel(r"$x_1$", fontsize=18)
    plt.ylabel(r"$x_2$", fontsize=18, rotation=0)

plt.figure(figsize=(11,4))
plt.subplot(121)
plot_decision_boundary(tree_clf, X, y)
plt.title("Decision Tree", fontsize=14)
plt.subplot(122)
plot_decision_boundary(bag_clf, X, y)
plt.title("Decision Trees with Bagging", fontsize=14)
plt.show()

Out-of-bag evaluation

bag_clf = BaggingClassifier(
    DecisionTreeClassifier(random_state=42),
    n_estimators=500, bootstrap=True, n_jobs=-1, oob_score=True, random_state=40
)
bag_clf.fit(X_train, y_train)
bag_clf.oob_score_

from sklearn.metrics import accuracy_score
y_pred = bag_clf.predict(X_test)
accuracy_score(y_test, y_pred)

bag_clf.oob_decision_function_[:10]

bag_clf = BaggingClassifier(
    DecisionTreeClassifier(splitter="random", max_leaf_nodes=16),
    n_estimators=500, max_samples=1.0, bootstrap=True, n_jobs=-1, random_state=42
)
bag_clf.fit(X_train, y_train)
y_pred = bag_clf.predict(X_test)

Random Forests

from sklearn.ensemble import RandomForestClassifier

rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16, n_jobs=-1, random_state=42)
rnd_clf.fit(X_train, y_train)
y_pred_rf = rnd_clf.predict(X_test)

np.sum(y_pred == y_pred_rf) / len(y_pred)

Feature Importance
from sklearn.datasets import load_iris

iris = load_iris()
rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16, n_jobs=-1, random_state=42)
rnd_clf.fit(iris["data"], iris["target"])

for name, importance in zip(iris["feature_names"], rnd_clf.feature_importances_):
    print(name, "=", importance)

plt.figure(figsize=(6, 4))
for i in range(15):
    tree_clf = DecisionTreeClassifier(max_leaf_nodes=16, random_state=42+i)
    indices_with_replacement = rnd.randint(0, len(X_train), len(X_train))
    tree_clf.fit(X[indices_with_replacement], y[indices_with_replacement])
    plot_decision_boundary(tree_clf, X, y, axes=[-1.5, 2.5, -1, 1.5], alpha=0.02, contour=False)
plt.show()

Boosting

from sklearn.datasets import fetch_mldata

mnist = fetch_mldata('MNIST original')
rnd_clf = RandomForestClassifier(random_state=42)
rnd_clf.fit(mnist["data"], mnist["target"])

def plot_digit(data):
    image = data.reshape(28, 28)
    plt.imshow(image, cmap = matplotlib.cm.hot,
               interpolation="nearest")
    plt.axis("off")


plot_digit(rnd_clf.feature_importances_)
cbar = plt.colorbar(ticks=[rnd_clf.feature_importances_.min(), rnd_clf.feature_importances_.max()])
cbar.ax.set_yticklabels(['Not important', 'Very important'])
plt.show()

AdaBoost

from sklearn.ensemble import AdaBoostClassifier

ada_clf = AdaBoostClassifier(
        DecisionTreeClassifier(max_depth=2), n_estimators=200,
        algorithm="SAMME.R", learning_rate=0.5, random_state=42
    )
ada_clf.fit(X_train, y_train)
plot_decision_boundary(ada_clf, X, y)
plt.show()

m = len(X_train)

plt.figure(figsize=(11, 4))
for subplot, learning_rate in ((121, 1), (122, 0.5)):
    sample_weights = np.ones(m)
    for i in range(5):
        plt.subplot(subplot)
        svm_clf = SVC(kernel="rbf", C=0.05)
        svm_clf.fit(X_train, y_train, sample_weight=sample_weights)
        y_pred = svm_clf.predict(X_train)
        sample_weights[y_pred != y_train] *= (1 + learning_rate)
        plot_decision_boundary(svm_clf, X, y, alpha=0.2)
        plt.title("learning_rate = {}".format(learning_rate - 1), fontsize=16)

plt.subplot(121)
plt.text(-0.7, -0.65, "1", fontsize=14)
plt.text(-0.6, -0.10, "2", fontsize=14)
plt.text(-0.5,  0.10, "3", fontsize=14)
plt.text(-0.4,  0.55, "4", fontsize=14)
plt.text(-0.3,  0.90, "5", fontsize=14)
plt.show()

list(m for m in dir(ada_clf) if not m.startswith("_") and m.endswith("_"))

Gradient Boosting

from sklearn.tree import DecisionTreeRegressor

rnd.seed(42)
X = rnd.rand(100, 1) - 0.5
y = 3*X[:, 0]**2 + 0.05 * rnd.randn(100)

tree_reg1 = DecisionTreeRegressor(max_depth=2, random_state=42)
tree_reg1.fit(X, y)

y2 = y - tree_reg1.predict(X)
tree_reg2 = DecisionTreeRegressor(max_depth=2, random_state=42)
tree_reg2.fit(X, y2)

y3 = y2 - tree_reg2.predict(X)
tree_reg3 = DecisionTreeRegressor(max_depth=2, random_state=42)
tree_reg3.fit(X, y3)

X_new = np.array([[0.8]])
y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))
print(y_pred)

def plot_predictions(regressors, X, y, axes, label=None, style="r-", data_style="b.", data_label=None):
    x1 = np.linspace(axes[0], axes[1], 500)
    y_pred = sum(regressor.predict(x1.reshape(-1, 1)) for regressor in regressors)
    plt.plot(X[:, 0], y, data_style, label=data_label)
    plt.plot(x1, y_pred, style, linewidth=2, label=label)
    if label or data_label:
        plt.legend(loc="upper center", fontsize=16)
    plt.axis(axes)

plt.figure(figsize=(11,11))

plt.subplot(321)
plot_predictions([tree_reg1], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label="$h_1(x_1)$", style="g-", data_label="Training set")
plt.ylabel("$y$", fontsize=16, rotation=0)
plt.title("Residuals and tree predictions", fontsize=16)

plt.subplot(322)
plot_predictions([tree_reg1], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label="$h(x_1) = h_1(x_1)$", data_label="Training set")
plt.ylabel("$y$", fontsize=16, rotation=0)
plt.title("Ensemble predictions", fontsize=16)

plt.subplot(323)
plot_predictions([tree_reg2], X, y2, axes=[-0.5, 0.5, -0.5, 0.5], label="$h_2(x_1)$", style="g-", data_style="k+", data_label="Residuals")
plt.ylabel("$y - h_1(x_1)$", fontsize=16)

plt.subplot(324)
plot_predictions([tree_reg1, tree_reg2], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label="$h(x_1) = h_1(x_1) + h_2(x_1)$")
plt.ylabel("$y$", fontsize=16, rotation=0)

plt.subplot(325)
plot_predictions([tree_reg3], X, y3, axes=[-0.5, 0.5, -0.5, 0.5], label="$h_3(x_1)$", style="g-", data_style="k+")
plt.ylabel("$y - h_1(x_1) - h_2(x_1)$", fontsize=16)
plt.xlabel("$x_1$", fontsize=16)

plt.subplot(326)
plot_predictions([tree_reg1, tree_reg2, tree_reg3], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label="$h(x_1) = h_1(x_1) + h_2(x_1) + h_3(x_1)$")
plt.xlabel("$x_1$", fontsize=16)
plt.ylabel("$y$", fontsize=16, rotation=0)
plt.show()

from sklearn.ensemble import GradientBoostingRegressor

gbrt =  GradientBoostingRegressor(max_depth=2, n_estimators=3, learning_rate=0.1, random_state=42)
gbrt.fit(X, y)

gbrt_slow =  GradientBoostingRegressor(max_depth=2, n_estimators=200, learning_rate=0.1, random_state=42)
gbrt_slow.fit(X, y)

plt.figure(figsize=(11,4))

plt.subplot(121)
plot_predictions([gbrt], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label="Ensemble predictions")
plt.title("learning_rate={}, n_estimators={}".format(gbrt.learning_rate, gbrt.n_estimators), fontsize=14)

plt.subplot(122)
plot_predictions([gbrt_slow], X, y, axes=[-0.5, 0.5, -0.1, 0.8])
plt.title("learning_rate={}, n_estimators={}".format(gbrt_slow.learning_rate, gbrt_slow.n_estimators), fontsize=14)
plt.show()

Tuning the number of trees using early stopping

from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

X_train, X_val, y_train, y_val = train_test_split(X, y)
gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=120, learning_rate=0.1, random_state=42)
gbrt.fit(X_train, y_train)
errors = [mean_squared_error(y_val, y_pred) for y_pred in gbrt.staged_predict(X_val)]

best_n_estimators = np.argmin(errors)
min_error = errors[best_n_estimators]

gbrt_best = GradientBoostingRegressor(max_depth=2, n_estimators=best_n_estimators, learning_rate=0.1, random_state=42)
gbrt_best.fit(X_train, y_train)

plt.figure(figsize=(11, 4))

plt.subplot(121)
plt.plot(errors, "b.-")
plt.plot([best_n_estimators, best_n_estimators], [0, min_error], "k--")
plt.plot([0, 120], [min_error, min_error], "k--")
plt.plot(best_n_estimators, min_error, "ko")
plt.text(best_n_estimators, min_error*1.2, "Minimum", ha="center", fontsize=14)
plt.axis([0, 120, 0, 0.01])
plt.xlabel("Number of trees")
plt.title("Validation error", fontsize=14)

plt.subplot(122)
plot_predictions([gbrt_best], X, y, axes=[-0.5, 0.5, -0.1, 0.8])
plt.title("Best model (55 trees)", fontsize=14)
plt.show()

gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=1, learning_rate=0.1, random_state=42, warm_start=True)

min_val_error = float("inf")
error_going_up = 0
for n_estimators in range(1, 120):
    gbrt.n_estimators = n_estimators
    gbrt.fit(X_train, y_train)
    y_pred = gbrt.predict(X_val)
    val_error = mean_squared_error(y_val, y_pred)
    if val_error < min_val_error:
        min_val_error = val_error
        error_going_up = 0
    else:
        error_going_up += 1
        if error_going_up == 5:
            break  # early stopping
print(gbrt.n_estimators)