## Direct Sampling
import numpy as np
def X1_sample(p=0.35):
return np.random.binomial(1, p)
def X2_sample(p=0.65):
return np.random.binomial(1, p)
def X3_sample(x1, x2, p1=0.75, p2=0.4):
if x1 == 1 and x2 == 1:
return np.random.binomial(1, p1)
else:
return np.random.binomial(1, p2)
def X4_sample(x3, p1=0.65, p2=0.5):
if x3 == 1:
return np.random.binomial(1, p1)
else:
return np.random.binomial(1, p2)
N = 4
Nsamples = 5000
S = np.zeros((N, Nsamples))
Fsamples = {}
for t in range(Nsamples):
x1 = X1_sample()
x2 = X2_sample()
x3 = X3_sample(x1, x2)
x4 = X4_sample(x3)
sample = (x1, x2, x3, x4)
if sample in Fsamples:
Fsamples[sample] += 1
else:
Fsamples[sample] = 1
samples = np.array(list(Fsamples.keys()), dtype=np.bool_)
probabilities = np.array(list(Fsamples.values()), dtype=np.float64) / Nsamples
for i in range(len(samples)):
print('P{} = {}'.format(samples[i], probabilities[i]))
p4t = np.argwhere(samples[:, 3]==True)
print(np.sum(probabilities[p4t]))